Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Cells ; 13(5)2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38474329

RESUMO

Wnt signaling is a highly conserved metazoan pathway that plays a crucial role in cell fate determination and morphogenesis during development. Wnt ligands can induce disparate cellular responses. The exact mechanism behind these different outcomes is not fully understood but may be due to interactions with different receptors on the cell membrane. PTK7/Otk is a transmembrane receptor that is implicated in various developmental and physiological processes including cell polarity, cell migration, and invasion. Here, we examine two roles of Otk-1 and Otk-2 in patterning and neurogenesis. We find that Otk-1 is a positive regulator of signaling and Otk-2 functions as its inhibitor. We propose that PTK7/Otk functions in signaling, cell migration, and polarity contributing to the diversity of cellular responses seen in Wnt-mediated processes.


Assuntos
Padronização Corporal , Neurogênese , Receptores Proteína Tirosina Quinases , Via de Sinalização Wnt , Animais , Diferenciação Celular , Membrana Celular/metabolismo , Receptores Proteína Tirosina Quinases/metabolismo , Via de Sinalização Wnt/fisiologia
2.
Aging (Albany NY) ; 14(20): 8270-8291, 2022 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-36287172

RESUMO

Why biological age is a major risk factor for many of the most important human diseases remains mysterious. We know that as organisms age, stem cell pools are exhausted while senescent cells progressively accumulate. Independently, induction of pluripotency via expression of Yamanaka factors (Oct4, Klf4, Sox2, c-Myc; OKSM) and clearance of senescent cells have each been shown to ameliorate cellular and physiological aspects of aging, suggesting that both processes are drivers of organismal aging. But stem cell exhaustion and cellular senescence likely interact in the etiology and progression of age-dependent diseases because both undermine tissue and organ homeostasis in different if not complementary ways. Here, we combine transient cellular reprogramming (stem cell rejuvenation) with targeted removal of senescent cells to test the hypothesis that simultaneously targeting both cell-fate based aging mechanisms will maximize life and health span benefits. We find that OKSM extends lifespan and show that both interventions protect the intestinal stem cell pool, lower inflammation, activate pro-stem cell signaling pathways, and synergistically improve health and lifespan. Our findings suggest that a combination therapy, simultaneously replacing lost stem cells and removing senescent cells, shows synergistic potential for anti-aging treatments. Our finding that transient expression of both is the most effective suggests that drug-based treatments in non-genetically tractable organisms will likely be the most translatable.


Assuntos
Longevidade , Rejuvenescimento , Humanos , Longevidade/fisiologia , Rejuvenescimento/fisiologia , Senescência Celular/fisiologia , Envelhecimento/fisiologia , Células-Tronco
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...